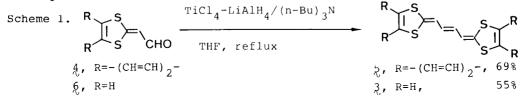
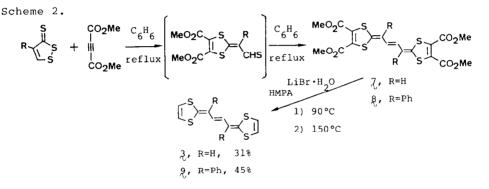

SYNTHESIS AND PROPERTIES OF 1,4-BUTENEDIYLIDENE-2,2'-BIS(1,3-DITHIOLE) Zen-ichi Yoshida,* Tokuzo Kawase, Hiroshi Awaji, and Shigeo Yoneda Department of Synthetic Chemistry, Kyoto University Yoshida, Kyoto 606, Japan

Summary: A new type of π -donor, 1,4-butenediylidene-2,2'-bis(1,3-di-thiole)'s have been synthesized by two routes and their electrochemical properties have been discussed.


In the preceeding paper,¹ we have reported that introduction of two sp² carbons between both 1,3-dithiole rings of tetrathiafulvalene (TTF, 1) led to the formation of more powerful π -donor ethanediylidene-2,2'-bis(1,3dithiole (EDBDT, 2) than TTF.² Based on this result, we designed the new type of π -donor, 1,4-butenediylidene-2,2'-bis(1,3-dithiole) (BDBDT, 3) in which four sp² carbon atoms are inserted. The MINDO/3 calculation suggests that the ionization potential decreases in the order of TTF > EDBDT > BDBDT. In this paper, we wish to report the synthesis of BDBDT, 3 and its derivatives and their characteristic electrochemical properties.

The following two methods are applied to synthesize BDBDT's. Method A: reductive coupling of aldehydes by TiCl₄-LiAlH₄ (Scheme 1) and Method B: desurfulization coupling of thicaldehydes and subsequent demethoxycarbonylation (Scheme 2).


Method A. Dibenzo derivative (5) was synthesized by the reductive coupling of aldehyde (4),³ prepared from glyoxal and 1,3-benzodithiolyl-tributylphosphonium tetrafluoroborate in THF in the presence of Et₃N. To a solution of TiCl₄ (0.34 ml) and LiAlH₄ (3 mg) in dry THF (6 ml)⁴ was added

a solution of aldehyde $\frac{4}{\sqrt{}}$ (120 mg) and (n-Bu)₃N (0.15 ml) in dry THF (4 ml) under reflux. After being refluxed for additional 3 hr, the reaction mixture was treated with 20% aq. K₂CO₃ and then filtered. The filtrate was extracted with benzene and the extract was washed with water and dried over Na₂SO₄. Column chromatography on silica gel with benzene gave $\frac{5}{\sqrt{}}$ in 69% yield as yellow crystals.⁵

The parent compound $\frac{3}{2}$ could not be obtained by the method via the reductive coupling of 2-formylmethylene-4,5-dicarbomethoxy-1,3-dithiole,⁶ but could be obtained by the reductive coupling of 2-formylmethylene-1,3-dithiole⁷ in 55% yield (Scheme 1). Also the compound $\frac{3}{2}$ could be synthesized by demethoxycarbonylation⁸ of tetraester derivative (7) prepared by the desulfurization coupling reaction of thioaldehydes⁹ as follows (Method B).

Method B. A mixture of tetraester χ^9 (97 mg) and LiBr·H₂O (0.40 g) in HMPA (5 ml) was heated at 90°C for 1h and then at 150°C for 15 min under argon atomosphere. The reaction mixture was poured into water, extracted with ether, dried over Na₂SO₄ and concentrated. The residue was chromatographed on silica gel with benzene to afford 3 in 31% yield as orange crystals. Diphenyl derivative (9) was similarly obtained from (8)⁹ in 45% yield. The physical and spectral data are shown in Table I.

$ \begin{array}{c} R^{1} \\ R^{1} \\ R^{1} \\ R^{2} \\ R^{2} \\ R^{2} \\ R^{2} \\ R^{1} $							
Compounds	R ¹	R ²	mp, °C	Yield, %	¹ H-NMR(CDCl ₃), δ, ppm		
3 ~	Н	Н	118-120	31 ^a (55 ^b)	5.29(d,2H,J=3Hz), 5.87(d,2H,		
			(dec.)		J=3Hz), 6.21(s,4H)		
9 V	Н	Ph	171-172	45 ^a	5.30(s,2H), 6.36(s,4H),		
-					7.36(s,10H)		
5 - (сн=сн) ₂ -	Н	225-227	32 ^b	5.30(d,2H,J=3Hz), 6.03(d,2H,		
			(dec.)		J=3Hz), 7.1-7.3(m,8H)		

Table I. 1,4-Butenediylidene-2,2'-bis(1,3-dithiole)'s

^a based on tetraester. ^b based on aldehyde.

The oxidation potentials of RDBDT's (3, 5, and 9) obtained by cyclic voltammetry measurements¹¹ are summarized in Table II together with those of TTF's and EDBDT's. All BDBDT's, interestingly, have only one reversible oxidation-reduction process at +0.22 \circ +0.47 V which are attributed to one step two-electron oxidation, though TTF and EDBDT show two clear oxidation processes.

Table II.	Cyclic Volammetry Oxidation Potentials ^a at Room Temperatur	e
	(V vs. Ag AgCl)	

Compounds	E ₁	E _m b	E ₂	E2-E1
3 ~		+0.22		Ann He G an A
9 ~		+0.28		
5		+0.47		
1	+0.34		+0.71	+0.37
Dibenzo TTF	+0.61		+0.93	+0.32
2	+0.20		+0.36	+0.16
Dibenzo EDBDT	+0.47		+0.64	+0.17

^a Solvent, CH₃CN; supporting electrolyte, 0.1M Et₄NClO₄; indicating electrode, Pt; reference electrode, Ag|AgCl; scan rate, 43mV/s. ^b $E_m = (E_1 + E_2)/2$. The similar one step two-electron oxidation is reported for the vinylogous redox system.¹² The peak separation could not be observed for BDBDT's even at -50°C. The two-electron oxidation was confirmed by Coulometric analysis of 3. This result could be explained in terms of a larger decrease of Coulombic repulsion of doubly ionized state of 3 than TTF and/or EDBDT by introducing four sp² carbon atoms between two 1,3-dithiole rings.

References and Notes

- 1. Published in this issue.
- 2. F. Wudl, G. M. Smith, and E. J. Hufnagel, J. Chem. Soc., Chem. Commun., 1453 (1970).
- 3. Aldehyde 4 was synthesized as follows: 1,3-benzodithiolyl-tributylphosphonium tetrafluoroborate was reacted with 2 equiv. of glyoxal (40% aq. solution) in THF at room temperature in the presence of Et_3N to give 4 in 88% yield. 4: yellow needles (from CH_2Cl_2 -hexane); mp 93-94°C; ¹H-NMR(CDCl₃) δ 6.70(d, 1H, J=3Hz), 7.2-7.7(m, 4H), 9.57(d, 1H, J=3Hz); IR(KBr) 2770, 2700, 1625, 1470, 1040, 760 cm⁻¹, mass m/e 194(M⁺).
- 4. A. Ishida and T. Mukaiyama, Chemistry Lett., 1127 (1976).
- 5. The products obtained from reductive coupling by $\text{TiCl}_4-\text{LiAlH}_4$ are reported to be trans form with regard to the central double bond.⁴ Therefore the compound $\frac{5}{24}$ is considered to be trans form.
- 6. 2-Formylmethylene-4,5-dicarbomethoxy-1,3-dithiole is described in the preceeding paper.¹
- 7. 2-Formylmethylene-1,3-dithiole was prepared as follows: 1,3-dithiolyl-tributylphosphonium tetrafluoroborate was reacted with two equivalent of glyoxal (40% aq. solution) in THF at room temperature in the presence of triethylamine to give 2-formylmethylene-1,3-dithiole in 71% yield; orange needles (from hexane); mp 81-82°C; ¹H-NMR(CDCl₃) δ 6.77(d, 1H, J=2Hz), 6.87(s, 2H), 9.40(d, 1H, J=2Hz); IR(KBr) 3100, 3070, 2840, 2790, 1613, 1594, 1452, 750, 670 cm⁻¹; mass m/e 144 (M⁺).
- S. Yoneda, T. Kawase, Y. Yasuda, and Z. Yoshida, J. Org. Chem., <u>44</u>, 1728 (1979).
- 9. D. M. Mckinnon and J. M. Buchshriber, Can. J. Chem., 49, 3299 (1971).
- All new compounds have been fully characterized by spectra (IR, NMR and Mass). Also, satisfactory elemental analyses were obtained.
- 11. Cyclic voltammograms of TTF's, EDBDT's, and BDBDT's were measured on a Yanaco Voltammetric Analyzer P-1000 under the same conditions.
- 12. S. Hunig and H. Ch. Steinmetzer, Liebigs Ann. Chem., 1060 (1976).

(Received in Japan 22 April 1983)